
T Teacher’s notes

Can you make it to the end?

An activity by the Australian Computing Academy

Teachers’ guide

Have you ever
designed a maze?
Humans have been designing mazes and labyrinths for over
2,500 years. They can be designed to amuse, confuse, and
conceal.

Did you know: a maze is made up of branching paths, while a
labyrinth is a single path going through a number of twists
and turns.

T Teacher’s notes

What we’ll be creating
In this activity students will:

● Familiarise themselves with the Scratch programming environment

● Create a sequence of instructions for a sprite

● Learn to use the keyboard as an input, to control the movement of a sprite

● Use conditional statements to determine whether the sprite can proceed or not (to prevent the sprite moving
through the maze walls)

● Differentiated learning: students will also have an opportunity to explore the use of:

○ variables, to create points or lives in their game

○ loops, to control the appearance of the heart sprite

○ Extra backdrops, to create extra levels in the maze

T Teacher’s notes

The nuts and bolts
Suggested year groups: Years 3 to 6

Subject areas: Digital technologies

Suggested timing: 3 to 4 hours

This guide is designed for use by teachers.
Click here for the accompanying student handout
or download it at cmp.ac/DTMazeStudent.

T Teacher’s notes

http://cmp.ac/DTMazeStudent
http://cmp.ac/DTMazeStudent

T Teacher’s notes

Set up steps
● Look at the finished maze project here (https://scratch.mit.edu/projects/238494728/)

 You will need:

● Access to Scratch: either at www.scratch.mit.edu or an offline version
● For students working online, student accounts. Students can create their own account (using an email

address) or teachers can create a teacher verified account and set up a class of students.

If you are just starting with Scratch, there are a number of free tutorials available on www.scratch.mit.edu to help you.

These slides are based on Scratch 3 which you can preview now at
preview.scratch.mit.edu.

You can also use Scratch 2 or the offline version of Scratch to make this project.

T Teacher’s notes

https://scratch.mit.edu/projects/238494728
https://scratch.mit.edu/projects/238494728/
http://www.scratch.mit.edu
http://www.scratch.mit.edu
http://preview.scratch.mit.edu

T Teacher’s notes

Step 1: Getting Started with Scratch

Welcome to Scratch.
To start a new project,
select Create.

T Teacher’s notes

Step 1 (continued): Creating your first project

Drag code blocks here
to create a project, drag
them back to the drawer
to delete them.

This is where you
see your code run.

Right click a sprite to delete it.

a
Explore different kinds
of blocks by selecting
the coloured dots. Choose a backdropAdd new sprites

T Teacher’s notes

Step 1 (continued): Working with sprites

Select any of these to
open code blocks for
your sprite or backdrop.

To code your Sprites,
choose the Code tab.

To change the way a
sprite looks, select the
Costumes tab.

Select the Sounds tab
to choose a sound for
your sprite.

T Teacher’s notes

Step 1 (continued): Adding some code

Anything in a white field can
be changed by selecting it.

 Always start with
an event.

Drag out these blocks to see what will happen.

Blocks are colour coded so
you can easily find them.

T Teacher’s notes

Step 1 (continued): Designing sprites

Right click to copy a
costume and edit it
to create animations.

Add lines, shapes,
colour and text

Group and layer elements

T Teacher’s notes

● Take a look at the sample project (https://scratch.mit.edu/projects/238494728/) we’ll be building.
● What elements do you need to make a working maze game? Students work to create a list that may

include some or all of the following:
○ A character to navigate through the maze
○ A maze - in Scratch represented as a birds-eye 2 dimensional view with obstacles to prevent

the sprite travelling from start to end without avoiding obstacles
○ A start point
○ An end point
○ Points or tokens to collect along the way
○ Additional mazes to play through once the first level is complete
○ Obstacles to avoid (possibly moving)

● Play the game as a group and ask the following:
○ How is the sprite controlled? (With the up, down, left and right arrow keys)
○ How else could you control it ? (Other keyboard options include WASD keys, or if time

permits this project works well in combination with a makey makey set or with the micro:bit
integration in Scratch 3)

○ What happens when the sprite tries to go through a wall?
○ How does the player know they have reached the end of the maze?

Step 2: What is a maze? Discussion activity

T Teacher’s notes

https://scratch.mit.edu/projects/238494728/
https://scratch.mit.edu/projects/238494728/
https://makeymakey.com/

Now that students have played the Scratch maze project, investigate the
code blocks inside the project. Ask the following questions:

Take a look at this code.

● What do you think this code does?
 (Answer: it moves the sprite 10 units (or steps, or pixels) to the right, or
 on the x plane - in Scratch the screen is 480 steps wide and 360 steps
 high, and the coordinate of the centre of the screen is 0,0.)

● If this was all the code in a project, what do you think would happens if
you pressed your left arrow key?
 (Answer: nothing yet. The key hasn’t been coded to do anything.)

● What would you change if you wanted the sprite to move further each
 time you press the right arrow key?
 (Answer: change 10 steps to 20 steps and see what happens.)

● What two changes would you need to make to this code if you wanted
 the sprite to move to the left?
 (Answer: change the first block to refer to clicking the left arrow, and
 change the unit in ‘change x by’ to -10, to move to the left)

Step 3: Investigating the code

T Teacher’s notes

Step 3: Investigating the code
(continued)
Take a look at the code on the left. Play the maze again.

● What happens when the sprite touches the maze wall?
 (Answer: it returns to the top left corner of the screen.)

● What would happen if you change the colour of the maze walls to green?
(Answer: you would no longer return to the start when you touch a wall,
and could keep moving through walls as you are not touching the colour
purple.)

● Move the if block out from the forever block and reattach it to the
 when clicked block. What happens now?
(Answer: the sprite can travel through the walls. Why? Because we only
check if we are touching the wall once, when the green flag is clicked.
Adding forever to the code means that we are always checking whether
the sprite is touching purple, instead of just once.)

T Teacher’s notes

Step 4: Starting the project with inputs
The first step is to choose a sprite to travel through the maze, and control it
the sprite’s movement with arrow keys.

Each time we interact with our project by using keystrokes or mouse-clicks
we’re providing an input to our project. An input is data or information put
into a digital system to activate or modify a process - in this case we’ll
modify how our sprite moves.

 Step by step instructions:

● Choose a new sprite

● In our project the up, down, left and right arrow keys control our
 sprite’s movement.

● Start by pulling out the when block from the
 drawer, and change it to say ‘When right arrow key pressed’.

● From the blocks, pull out the

● Combine the blocks as shown.

● Test your code by pressing the right arrow key and see what happens.

T Teacher’s notes

Step 4: Starting the project with
inputs(continued)
● The next key to code is the up arrow. There are two differences between

the instruction to move right and the instruction to move up - the key
pressed (up arrow) and this time as we are moving up and down instead
of left or right, we change y by 10.

● Drag a new when space key pressed block from the events drawer

● Drag out a change y by 10 block from the motion drawer and
connect it.

● Students can then go ahead and create two more sets of code for the
remaining two arrow keys applying their knowledge. The final code for
the arrow keys is shown below.

T Teacher’s notes

The sprite is controlled by 4 arrow keys and moves around the screen.
 This is a digital solution with an algorithm involving user input (ACTDIP011)

Checkpoint

T Teacher’s notes

Step 5: Draw the maze
Now it’s time to draw a maze using the paint tools in Scratch.

Create a new backdrop by
clicking the paintbrush icon.b

Select the
backdrop taba

z
For the code to work, use only
one colour for the maze

c

 Using the paintbox tools,
 filled in colour rectangles
and circles can be used to
quickly create a simple maze.

d

 Students can build
 A maze like the
ones in the example, or
can use interesting
shapes to create
obstacles - it’s up to
them. Put a time limit on
creating the first level of
the maze - students can
always come back to
their maze and work on
the details later.

e

 Ensure that the sprite has
 enough space to get around
the maze. If not, the resize tool is
available to shrink or grow a sprite.

f

T Teacher’s notes

● The maze game doesn’t work yet. Brainstorm with students
 what the problem is.
 (Answer: the sprite travels through the maze walls).

● Currently the sprite can move through walls freely. In a real
 maze the walls are solid, and you have to find your way to the
 end by avoiding the walls.

● To fix this we’re going start making decisions in our game
 based on whether a certain thing is true or false. This is called
 a conditional statement, or branching. In Scratch, we can ask
 ‘if something is true’ then do the next step. (If it’s not true, the
 computer will skip to your next instruction).

● In this case, we’ll check if our sprite is touching the colour
 purple. If it is, then we need to write some code to send the
 sprite back to the start of the maze using an x and y coordinate.
 If it’s not touching the colour purple, then this instruction is
 ignored and the sprite will continue to move.

Step 6: Interact with the maze

T Teacher’s notes

Step 6: Interact with the maze
(continued)
● This code doesn’t do anything yet as it’s not connected to an

 event block. Since we want to check from the start of the
 game whether the sprite is touching the colour purple, we
 use a block.

● It’s important that we check all the time whether or not we’re
 touching the colour purple, instead of just once. To do this,
 we put the code above into a block.

● Finally, to make the maze work well we instruct our sprite to
 start each game in the same position on stage, using a
 block.

● Here is the final code.

T Teacher’s notes

Your sprite is controlled by 4 arrow keys and moves around the screen.
It can not pass through the walls of the maze.

 This is a simple digital solution involving branching (decisions) and user input (ACTDIP011)

Checkpoint

T Teacher’s notes

Now that the maze is more challenging it’s time to think
about what the goal of our maze is.

● Create an endpoint on your backdrop - a shape in a
 different colour. In our example we have added a pink
 rectangle to the backdrop.

● To check if the sprite has reached the end point, use the
 same technique as previously - if touching a colour
 (pink) then do something.

● Students can choose what happens to the sprite when
 it reaches the end. Options include sound, speech,
 colour effects, or returning to the start point. Encourage
them to explore the looks and sound code drawers to
find interesting combinations.

Step 7: Add a start point
and an endpoint

T Teacher’s notes

Congratulations! You have a working maze.

The following steps increase the complexity of the maze - complete them as time permits.

Checkpoint

T Teacher’s notes

Step 8: Add variables
Adding variables is a great way to add extra challenge to our game.

A variable is a place to save information in your project.

A variable can change when something happens.

Discuss with students how lives could work in this project:

● How many lives should the player start with?

● When should a player lose a life?

● What happens when a player has no lives left?

The code on the next slide is an example of adding to our maze with a
variable called ‘lives’, where the player starts the game with 3 lives, loses a
life each time the sprite touches a wall, and ends the game when there are
less than zero lives.

To start, follow the instructions on the right.

Head to the variables drawer, select
make a variable, and call it Lives.This
will create blocks for your project to set
and change how many lives you have

a

T Teacher’s notes

Step 8: Add variables

z
Then gather the blocks below, and add
them to your existing code as shown.b

T Teacher’s notes

● Choose a new sprite - in the example given it’s a heart candy

Let’s add an extra element to our maze to make it more interesting: tokens to
collect. Adding tokens allows us to explore the concepts of cloning, and
looping.

Our goal is to place eight hearts randomly around the screen, and then earn
additional lives when the player collects them.

Step 9: Create tokens

Note: once you have a second sprite it’s important to select which
sprite you want the code to apply to: you can check: the sprite
being coded is highlighted blue on the menu.

Remember, if you want to create a new sprite click here.

● Until the sprites are spread around the screen we want them to
be hidden.

● Rather than making eight new sprites students can use cloning in this
project. Cloning means that one sprite is copied, and code can apply to all
the copies of that sprite.

● A repeat block sets the number of clones created - in our example there
are 8 clones.

T Teacher’s notes

Step 10: Send tokens to random
positions

 If you are using Scratch 2,
 use the 'go to mouse-pointer'
 block and click the triangle to
 choose go to random position.

● A when I start as a clone block is very useful event block if you
want all of your clones to to react to situations independently. For
example, if we want a heart to hide when we touch it, we don’t want all
the hearts to hide, just the one that is touched.

● A ‘go to random position’ block places copies of the sprite across the
screen, however some of these will be on the solid maze walls, so
can’t be reached.

● We can use the ‘if touching colour purple’ idea again here to hide any
hearts that have been placed on the walls. This means each game
there will be some number between 0 and 8 hearts which show and
can be collected. Notice that this time instead of using ‘if’ we use ‘if,
then, else’ - this means that we will either hide or show the heart
depending on whether it touches the maze walls.

● A wait block sets a time limit for how long the block will be visible.
Because this code applies to each clone, each clone will appear for a
different random amount of time between 1 and 10 seconds.

● Finally, the cloned sprite hides so it’s no longer able to be collected.

T Teacher’s notes

Step 11: Interactions between
sprites and tokens
The next step is to decide what happens when the sprite navigating the
maze touches a heart.

In the example shown there are some graphical effects (changing size,
colour, and rotating). There are many options for students to explore at
this point. Importantly, using a repeat _ times block is an example of
iterating, where an instruction is executed multiple times.

If students wish to use variables, they can add code at this point to earn
extra lives by collecting hearts.

T Teacher’s notes

Step 12: Make it your own
Now that the maze is working, take some time to consider with students what to do next.

Some things to try are:

● Create a second level so that when the player reaches the end point on level 1, there is a second maze
(background) to navigate

● Make your second sprite (the heart) move and takes lives from the player if it touches the player

● Add another variable as health points and use a third colour on the background - when you touch it you
get health points

● Use a timer to make the maze more challenging.

On the next page is an example of adding extra code to allow for more backdrops (levels) in the maze).

T Teacher’s notes

Step 12: Make it your own

Gather the blocks above, and add
them to your existing code as shown.

T Teacher’s notes

Discuss with students:

● Is there anything in the maze that they would like to change or improve?

● Was there anything they found really tricky?

● Are there parts of this project they would use again in different ways?

● Encourage the students to play other students’ games, and provide feedback, what
did they like? Was there anything they didn’t understand or felt could be improved?

Reflection

T Teacher’s notes

T Teacher’s notes

Curriculum content description
Define simple problems, and describe and follow a sequence of steps and
decisions (algorithms) needed to solve them (ACTDIP010)

Implement simple digital solutions as visual programs with algorithms
involving branching (decisions) and user input (ACTDIP011)

Plan, create and communicate ideas and information independently and
with others, applying agreed ethical and social protocols (ACTDIP013)

Link to student guide

T Teacher’s notes

If you prefer students to work through the
challenge at their own pace, our student guide
guides students through the challenge using
simplified language and without the discussion
activities or curriculum links.

Student guide: cmp.ac/DTMazeStudent

Link to activity on ACA website

http://cmp.ac/DTMazeStudent
https://cmp.ac/maze-website

We hope you’ve enjoyed exploring Scratch with the Australian Computing Academy!

You can stay in touch and hear about our new resources as we publish them by:

 Signing up to our newsletter on our website at www.aca.edu.au

 Liking our Facebook page

 Following us on Twitter

 Following us on Instagram

 Call us: 02 8627 8686

Thank You!

Try one of our online Digital Technologies Challenges at:
https://aca.edu.au/projects/dt-challenges/

T Teacher’s notes

http://www.aca.edu.au

This work is licensed under the Creative Commons Attribution 4.0 International License.

To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

or send a letter to:

Creative Commons,
PO Box 1866, Mountain View,
CA 94042, USA.

Creative commons

T Teacher’s notes

http://creativecommons.org/licenses/by/4.0/

