Logic gates

Trace logic gates following simple rules, to check if the light is on or off!

This activity teaches...

Logic gates are a representation of electronic circuit devices used in computers. Their inputs are binary, either on or off (or 1 or 0), and so is their output. Different logic gates have different rules that define how they work.

In this activity we’ll learn the rules of logic gates, add logic gates together, and determine what their output will be based on their inputs.

This activity is aimed at lower secondary students and will take about 45 minutes to complete.

Logic gate symbols

- OR
- NOR
- AND
- NAND
- XOR
- XNOR
- Buffer
- NOT

Getting started (read this with your child):

Logic gates have inputs, and outputs with just two states. On, and off (or 1 and 0).

If an input is on, we say it has a value of 1.
If an input is off, we say it has a value of 0.

Here are some gates!
This is an AND gate. It’s output will be 1 if the top and bottom inputs are 1.

![AND gate diagram]

We can also represent this with a truth table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

This is an OR gate. It’s output will be 1 if either the top or bottom input are 1.

![OR gate diagram]

We can also represent this with a truth table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Let’s try some activities with these logic gates.
Logic Gates
Solve these questions! Will the light be on or off?

For these questions, we’ll ask if the light is on or off.

The light is on if there is power getting to it through the wire, and it’s off if there isn’t.

Question 1
Will this light be on or off?

Question 2
Will the light be on or off?

The tricky bit is, we’re going to send the power through the logic gates before it gets to the light.

Question 3
Will the light be on or off?

Question 4
Will the light be on or off?

Question 5
This light is off. Which switch do we need to flip to turn it on? A, or C?
New Logic Gates!
This is called a NAND gate. It’s output will be 1 if both the top and bottom inputs are not 1. You can think of it as an AND gate, with the output reversed. That’s why we call it a NAND gate, Not AND gate.

![NAND gate](image)

We can also represent this with a truth table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This is an NOR gate. It’s output will be 1 if neither the top or bottom input are 1.

![NOR gate](image)

We can also represent this with a truth table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Let’s try some problems with these new gates.
Question 6
Will the light be on or off?

Question 7
Will the light be on or off?

Question 8
What’s the minimum number of switches that can be turned on for this light to be on? _____
The maximum? _____

Question 9
Will the light be on or off?
XOR and XNOR gates

This is an exclusive OR gate, or XOR gate. It’s output will be 1 if either the top or bottom inputs are 1, but not both.

![XOR Gate Diagram]

We can also represent this with a truth table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

This is an XNOR gate, or exclusive not or. It’s output will be 1 if the output of an XOR gate would be 0.

![XNOR Gate Diagram]

We can also represent this with a truth table:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Let’s try some problems with these new gates.
Question 10
Will the light be on or off?

Question 11
Will the light be on or off?

Question 12
Will the light be on or off?
Answer key
Choose if you want to print this for your kids or keep it to yourself!

1: Off

2: On

3: On

4: Off

5: Flip A to turn it on

6: On

7: On

8: On

9: Off

10: On

11: Off

12: On

Minimum on switches: 0
Maximum on switches: 2
Want more?
Here are some further activities, online resources, assessment ideas and curriculum references.

Adapting this activity
Older students can go on to learn about DeMorgan’s theorem, which lets you transform a set of logic gates into equivalent gates, and boolean algebra, which is used in computing.

Keep the conversation going
- How does the number of logic gates used relate to the number of inputs?
- Can you think of a way to build a physical logic gate? Think water, or marbles. Some people have even made them using lego!

Keep learning
For High School students interested in learning about how computers communicate with encrypted messages, try this course:

For teachers creating a portfolio or learning or considering this task for assessment
Students can draw a truth table for a circuit of logic gates, rather than just one.

Is there any way to lessen the number of gates needed while getting the same result?

Linking it back to the Australian Curriculum:
Digital Technologies
Algorithms
Design, modify and follow simple algorithms involving sequences of steps, branching, and iteration (repetition) (ACTDIP019)